
Abstract We derive new quantitative descriptors for the
20 naturally occurring amino acids based on multidimen-
sional scaling of 237 physical–chemical properties. We
show that a five-dimensional property space can be con-
structed such that the amino acids are in a similar spatial
distribution to that in the original high-dimensional 
property space. Properties that correlate well with the
five major components were hydrophobicity, size, pref-
erences for amino acids to occur in α-helices, number of
degenerate triplet codons and the frequency of occur-
rence of amino acid residues in β-strands. Distances
computed for pairs of amino acids in the five-dimension-
al property space are highly correlated with correspond-
ing scores from similarity matrices derived from se-
quence and 3D structure comparison. We used the five-
dimensional property distances to cluster the amino acids
in groups depending on a cutoff distance. These groups
define a reduced amino acid alphabet for protein folding
studies. Our descriptors should provide a quantitative
means to identify property motifs in sequences of protein
families. Electronic supplementary material to this paper
can be obtained by using the Springer Link server locat-
ed at http://dx.doi.org/10.1007/s00894-001-0058-5.

Keywords Multidimensional scaling · Amino acid ·
Substitution matrices · BLOSUM · PAM · 
Physical–chemical properties · Cluster analysis

Introduction

Homologous proteins share a common fold, even when
the overall sequence identity is less than 10%. [1] The
physical–chemical properties of the less conserved resi-
dues still encode the information necessary for folding.
Hydrophobicity or charge is to a high degree conserved
in structurally equivalent positions among evolutionarily
related proteins, even when the individual amino acid
residues are different. [2, 3, 4, 5] Profile methods [6, 7]
such as PSI-Blast, [8, 9] and hidden Markov models [10,
11, 12] rely implicitly on conserved patterns of amino
acids to detect homologous proteins. Protein threading
methods rely even less on sequence identity and detect
the homologous folds primarily based on the structure-
forming properties of areas of the protein sequence. [13,
14, 15, 16, 17, 18, 19] While these methods have shown
extraordinary success in recognizing targets with similar
folds and low sequence identity, results from recent
CASP competitions [8] indicate that there are opportuni-
ties for improvements.

We suggest here a new method to summarize infor-
mation about physical–chemical properties that should
prove useful in identifying protein homologues on the
basis of property-based motifs. We used multidimension-
al scaling of 237 physical–chemical properties to derive
quantitative descriptors for all 20 naturally occurring
amino acids. We were able to reproduce the main varia-
tions of all properties for the 20 amino acids through five
quantitative descriptors. Multidimensional scaling is a
general classification approach to reconstructing the geo-
metrical configuration of large point sets in lower dimen-
sions. [20, 21, 22] This approach has been used in dis-
tance geometry to calculate protein structures from NMR
data [23] and to classify 3D conformations of proteins,
[24, 25] but our method of reducing the large redundan-
cy in physical–chemical properties by multidimensional
scaling is novel. While the physical meaning of each
descriptor can be correlated with individual properties,
the five descriptors cannot simply be replaced by five in-
dividual properties. A similarity measure based on our
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descriptors correlated well with similarity indices de-
rived from substitution matrices such as PAM250, [26]
BLOSUM62, [27] sub-structural [28] and in particular
Gonnet. [29] These quantitative descriptors can charac-
terize motifs in protein families (work in progress), and
may aid in improving alignments for protein modeling.
The information has been incorporated into our MASIA
program and is available for use at our website
http://www.scsb.utmb.edu/masia. [30, 31, 32]

Materials and methods

Property normalization

Each property was normalized such that the standard de-
viation is 1 and the average is 0. Standard deviation was
calculated using the “biased” method. The normalization
ensures that all properties are expressed as dimensionless
numbers.

(1)

(2)

where S is normalized property values, α is the index of
the property and i stands for the amino acid. P is the
property value, and σPα are the average and the stan-
dard deviation of property α.

Representation of properties

Each amino acid i is represented as a vector S(i) in a
237-dimensional continuous space, where the compo-
nents Sα(i) are the normalized property values. The sca-
lar product Qij between two vectors S(i) and S(j), where j
is another index for an amino acid, is given by

(3)

(4)

The positive symmetric 20×20 matrix Q consists of the
scalar products of the property vectors S(i) and S(j),
where i=1...20 and j=1...20.

Calculation of eigenvectors and eigenvalues

Eigenvectors E and eigenvalues λ of the matrix Q were
computed using the JACOBI and EIGSRT subroutines
provided in Numerical Recipes. [33]

(5)

As Q is of order 20, we will have 20 eigenvectors and ei-
genvalues λ and the smallest eigenvalue λ20 is equal to 0
due to normalization of the properties. The subroutine
JACOBI implements a Jacobian transformation of a
symmetric matrix and returns the eigenvectors and 
values of the Q matrix. The eigenvalues and their corre-
sponding eigenvectors are indexed in decreasing order of
the eigenvalues.

Calculation of distances in the property space

If µ represents the index of eigenvalue and eigenvector,
then the elements of the Q matrix can be equated to ei-
genvalues and eigenvectors as:

(6)

The first five significant eigenvalues were selected for
the representation of amino acids, thus Qij can be written
as:

(7)

Each amino acid can be represented as a vector in 
the five-dimensional Euclidean space (a.k.a. Eigen sub-
space) with each dimension perpendicular to each other.
The co-ordinates of the ith amino acid can be written as:

(8)

The distance between the ith and jth amino acids is given
by

(9)

Distances computed between amino acids in the five-
dimensional Eigen sub-space constitute the property dis-
tance matrix (PDM). Small distance values between two
amino acids indicate they are similar in all of their 237
physical-chemical properties.

Generation of normally distributed random numbers

Random numbers with normal (Gaussian) distribution
were generated using the Box–Muller method and imple-
mented using the GASDEV subroutine from Numerical
Recipes. [33] The distribution of these random numbers
in multiple dimensions will approximate a spherical sur-
face.
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Calculation of correlation coefficient

Pearson’s correlation coefficient between pairs of quanti-
ties (xi,yi) is given by the formula

(10)

Cluster analysis

In a first approach amino acids were clustered according
to their property distances below a given threshold. 
A single cluster core, formed by the closest amino acid
pair in the five-dimensional Eigenspace, is identified
first. Distances from the centroid of this core to all other
amino acids are calculated, and the amino acid with the
least distance to the centroid is added, provided the dis-
tance is below the threshold. A new centroid is computed
each time an amino acid is added. The procedure is re-
peated until there are no other amino acids closer than
the threshold to the centroid of the cluster. The whole
procedure is repeated with the remaining amino acids,
which are not yet part of a cluster. As a second approach
we used the hierarchical clustering program KITSCH of
the phylogenetic package PHYLIP version 3.2.3. [34]
The PDM between all amino acids was used as the input
to KITSCH. The program produces a best tree that has
similar distances computed from the tree and the dis-
tance matrix using the Fitsch–Margolish algorithm. [35]

Results

Quantitative representation of amino acids 
in five dimensions

A comprehensive list of 237 physical–chemical proper-
ties was compiled from the public databases SWISS-
PROT [36] and dbGET. [37] Only those properties of the
side chains with numerical values for all amino acids
were considered. We included experimentally deter-
mined properties, such as different scales of hydrophobi-
cities derived from transfer free energy values, volumes,
molecular weight, or helix-coil equilibrium constants,
and statistically derived quantities, such as propensity
values for secondary structures. A complete list of all
237 included properties is provided as electronic supple-
mentary material.

Each amino acid is represented as a vector in the 
237-dimensional space of normalized properties with
mean value of zero and standard deviation 1. Our multi-
dimensional scaling approach reveals the high redundan-
cy of the property values (see Materials and methods for
details). The computational approach and justification
for reduction to a lower dimensional space follows close-
ly the practice of embedding in distance geometry. [23]
The distribution of the eigenvalues of the Q matrix

(Fig. 1), containing the scalar products between all pairs
of the 237-dimensional amino acid vectors, rapidly de-
creases from the largest value λ1=1962 to λ19=16. As a
control we generated 237 random vectors with a uniform
distribution of property values, and calculated the distri-
bution of eigenvalues for these “random” property val-
ues. In the random case, the eigenvalues are all almost
equal as expected. In contrast, the rapid decrease of the
eigenvalues derived from the 237 physical–chemical
properties shows a large anisotropy of the distribution of
the property values. This anisotropy is a consequence of
the large redundancy in the sets of property values. This
suggests that the number of properties can be reduced
while retaining approximately the same distribution of
amino acids in the property space. The eigenvalues rap-
idly decrease within the five largest eigenvalues and are
then substantially smaller than the values calculated
from the “random” property set. We then compared dis-
tances in the original property space with those regener-
ated from a subset of n eigenvectors, varying n systemat-
ically from 2 to 20 (Fig. 2a). The correlation coefficient
between the original and regenerated distances is more
than 99% for n=5, and approaches 1 very rapidly. We
therefore chose the first five eigenvalues and eigenvec-
tors to calculate five-dimensional numerical descriptors
of the amino acids. The individual distances in the origi-
nal property space and in the subspace using the first
five eigenvectors are highly correlated (Fig. 2b). The
five numerical descriptors for each amino acid are given
in Table 1. 

Physical–chemical meaning of the numerical descriptors

Two-dimensional representations of the 20 amino acids
in the plots E1 versus the eigenvectors E2 to E5 provide
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Fig. 1 Distribution of the eigenvalues of the components, comput-
ed from 237 normalized properties (black bars). Indices for the
components are sorted according to decreasing order of the eigen-
values. As a control, eigenvalues of a matrix derived from 237
random uniformly distributed vectors are shown in white bars



insights into the physical meaning of the descriptors
(Fig. 3). The hydrophobic/hydrophilic character is the
main determinant of the distribution of amino acids
along E1. Hydrophobic residues I, F, L, W, M, C and Y
are grouped towards negative values along E1, while the
polar and charged residues have positive values. Small
residues, G, P and S cluster at positive values along E2
and large residues R, K, E and W at negative values.
Residues with a high helix-forming propensity (A, L, E)
are grouped at the bottom of Fig. 3b, and helix-breakers
are at the top.

The physical meaning of the components E4 and E5
are not immediately obvious from the two-dimensional
representation; we therefore calculated linear correlation
coefficients between all 237 properties and the five nu-
merical descriptors E1 to E5 (Table 2). These data con-
firm the high correlation of E1 to E3 for hydrophobicity,
size and helical propensity. The correlation coefficients
for E4 are highest for partial specific volumes, relative
abundance of amino acids, and the number of codons.
The β-strand forming propensity seems the dominant
factor for E5. The highest correlation coefficients for E2
to E5 are significantly different from 1, and while devia-

tions from a linear correlation between E1 and hydroph-
obicity, and E2 and size (represented by side chain
length) are small (Fig. 4a, b), significant differences ex-
ist for residues W and G for the correlation between des-
criptor E3 and the α-helix propensity, and for K between
E4 and the number of codons (Fig. 4c, d). Thus the five
components cannot simply be replaced by five individual
properties. 

Cluster analysis of the amino acids

The five-dimensional descriptors represent an exhaustive
large set of physical–chemical properties. The Euclidian
distances between the five-dimensional descriptors,
PDM, can be used to group the amino acids in different
clusters according to this large set of properties. In our
first approach we clustered similar amino acids accord-
ing to their property distances with an increasing dis-
tance threshold from 9.5 to 20, shown in bold face in 
Table 3. For small distance thresholds only the large hy-
drophobic residues I, V, L, F and the polar and charged
residues S, T, Q, N and D form clusters. These clusters
grow as the threshold is increased until they form only
two groups comprising hydrophobic and hydrophilic 
residues. The small amino acids A, G, C and P are not
part of any cluster until large values of the threshold.
This cluster analysis can be used to rationally define a
reduced alphabet for the amino acid sequences, e.g. a
seven letter code with a cut-off value of 12.5.

The hierarchical clustering program KITSCH of the
phylogenetic package PHYLIP version 3.2.3 [34] yields a
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Fig. 2a,b Comparison of distances between amino acids in the
original property space and component subspaces. a Linear corre-
lation coefficient between distances of all amino acid pairs in the
original 237-dimensional property space and in subspaces of n
components with n varying from 2 to 20. b Correlation plot be-
tween distances of amino acid pairs in the five-dimensional space
formed by the first five components (D5) and distances in the orig-
inal property space (D237). The linear correlation coefficient is
0.992

Table 1 Components E1 to E5 of 237 physical–chemical proper-
ties for each amino acid

Eigenvalue (λ) Eigenvectora

E1 E2 E3 E4 E5
1961.504 788.200 539.776 276.624 244.106

A 0.008 0.134 –0.475 –0.039 0.181
R 0.171 –0.361 0.107 –0.258 –0.364
N 0.255 0.038 0.117 0.118 –0.055
D 0.303 –0.057 –0.014 0.225 0.156
C –0.132 0.174 0.070 0.565 –0.374
Q 0.149 –0.184 –0.030 0.035 –0.112
E 0.221 –0.280 –0.315 0.157 0.303
G 0.218 0.562 –0.024 0.018 0.106
H 0.023 –0.177 0.041 0.280 –0.021
I –0.353 0.071 –0.088 –0.195 –0.107
L –0.267 0.018 –0.265 –0.274 0.206
K 0.243 –0.339 –0.044 –0.325 –0.027
M –0.239 –0.141 –0.155 0.321 0.077
F –0.329 –0.023 0.072 –0.002 0.208
P 0.173 0.286 0.407 –0.215 0.384
S 0.199 0.238 –0.015 –0.068 –0.196
T 0.068 0.147 –0.015 –0.132 –0.274
W –0.296 –0.186 0.389 0.083 0.297
Y –0.141 –0.057 0.425 –0.096 –0.091
V –0.274 0.136 –0.187 –0.196 –0.299

a The numerical descriptors for each amino acid i are calculated
by for the five eigenvectors 



tree of clusters very similar to our first approach (Fig. 5).
The separation in seven clusters at the cut-off distance of
12.5 in Table 3 is exactly matched by the hierarchical
clustering method (dotted line I in Fig. 5), and the GP
cluster is found at the slightly higher cut-off value 14.5

(dotted line II in Fig. 5). The fine grain groupings IV-
LFM, WY, RK and ST are found by both procedures. The
only major difference is that Q and H, which did not clus-
ter at small threshold values in our first procedure, are
grouped early in the hierarchical method.
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Fig. 3a–d Distribution of ami-
no acids along the principal
components E1, E2, E3, E4 and
E5. a Two-dimensional plot E2
versus E1. The E1 and E2 axis
correspond to hydrophobi-
city/hydrophilicity and molecu-
lar size of amino acids. b Two-
dimensional plot E3 versus E1.
The E3 component corresponds
approximately to helical-pro-
pensity. c Two-dimensional
plot E4 versus E1. E4 is related
to the relative abundance of
amino acids. d Two-dimension-
al plot E5 versus E1. E5 shows
a weak correlation to β-strand
propensity

Fig. 4a–d Correlation between
components (horizontal axis)
and high correlating individual
properties (vertical axis). 
a Correlation plot between hy-
drophilicity scale [57] and E1
(|r|=0.95). b Correlation plot
between side chain length of
amino acids [64] and E2
(|r|=0.89). c Correlation plot
between alpha-helical frequen-
cy [74] of amino acids and E3
(|r|=0.67). d Correlation plot
between the number of codons
coding for each of the amino
acids and E4 (|r|=0.65)



Comparison between property distances and similarity
scores derived from substitution matrices

Amino acids in close proximity in descriptor space have
similar physical–chemical properties. Substitutions of
amino acids in related proteins are usually to amino 

acids with similar properties. We thus anticipate that the
substitution frequencies of amino acids in protein fami-
lies should be inversely related to our property distances.
To test this hypothesis we correlated our property-based
distances with all major substitution matrices. [26, 27,
29, 38, 39, 40] We also included substitution matrices
derived from 3D structure comparisons, as they are usu-
ally more sensitive to detect distantly related proteins.
[41] Recently an amino acid similarity matrix, sub-struc-
tural matrix (SSM), based on the structural similarity
comparison of non-homologous proteins [28] and a
structure derived similarity matrix were published. [42]

Linear correlation coefficients between the off-diago-
nal elements of the substitution matrices and our PDM of
the 5D descriptors are shown in Table 4. High absolute
correlation coefficients of about 0.8 were observed for
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Table 2 Individual physical–chemical properties with high corre-
lation to each of the five components E1 to E5

Eigen- Property name and reference |r|a
axes

E1 14 Å contact number [50] 0.971
Effective partition energy [39] 0.967
Average reduced distance for Cα [56] 0.953
Hydrophilicity scale derived from HPLC [57] 0.950
Hydrophobicity scale [58] 0.950
Partition co-efficient [59] 0.946
Information value for accessibility [60] 0.942
Average surrounding hydrophobicity [61] 0.928
Long range non-bonded energy per atom [62] 0.924
Hydrophobic parameter pi [63] 0.923

E2 STERIMOL length of the side chain [64] 0.889
Distance between Cα and centroid of side chain 0.881

[65]
Radius of gyration of side chain [65] 0.876
Residue accessible surface area [66] 0.822
Entropy of formation [67] 0.815
Absolute entropy [67] 0.791
Molecular weight [68] 0.783
Side chain torsion angle phi [65] 0.746
Principal component II [69] 0.742
Average volume of buried residue [70] 0.742

E3 Normalized frequency of turn [71] 0.747
Conformational parameter for β-turn [72] 0.714
Information measure for loop [73] 0.713
Information measure for turn [73] 0.706
Normalized frequency of α-helix [74] 0.674
Average relative probability of helix [75] 0.674
Information measure for α-helix [73] 0.662
Normalized frequency of α-helix [76] 0.656
Normalized relative frequency of α-helix [77] 0.644
Normalized frequency of α-helix [78] 0.640

E4 Partial specific volume [79] 0.658
Number of codon(s) 0.651
Amino acid composition of total proteins [80] 0.637
Amino acid composition in SWISSPROT [36] 0.623
Amino acid composition [81] 0.610
Apparent partial specific volume [82] 0.606
Relative frequency of occurrence [83] 0.604
Composition [38] 0.594
Amino acid composition of total proteins [80] 0.547
Amino acid distribution [84] 0.538

E5 Frequency of extended structure [85] 0.560
Free energy in β-strand region [86] 0.534
Beta-strand indices [87] 0.529
Free energy in β-strand region [86] 0.513
Information measure for pleated-sheet [73] 0.487
Frequency of β-sheet [76] 0.484
Retention co-efficient in TFA [88] 0.479
Information measure for extended structure [73] 0.473
Net charge [89] 0.425
Normalized frequency of extended structure [90] 0.423

a Ten individual properties with highest correlation to each princi-
pal components E1 to E5 are given. Absolute value of the linear
correlation coefficient calculated between the components and the
properties

Table 3 Cluster analysis of amino acids according to their proper-
ty distance

Distance cut-offa Amino acid clustersb

9.5 IVLF M W Y C A G P E RK H ST QDN
10.0 IVLF M W Y C A G P E RK H STQDN
10.5 IVLFM WY C A G P E RK H STQDN
11.0 IVLFM WY C A G P E RK HSTQDN
12.5 IVLFM WY C A G P ERKHSTQDN
14.5 IVLFMWY C A GP ERKHSTQDN
15.0 IVLFMWYCHT A GP ERKSQDN
18.0 IVLFMWYCHTAERKSQDNP G
20.0 IVLFMWYCHTAERKSQDNPG

a Euclidean distance in the five-dimensional eigenspace
b Clusters obtained below distance cut-off are shown in bold

Fig. 5 Hierarchical clustering of amino acids using the PDM 
as input to the program KITSCH of the phylogenetic package
PHYLIP. Amino acids connected to the same node are closely lo-
cated in the property space. This best fit binary tree (standard de-
viation of 21.12 and sum of squares of 16.86) was selected from
2,196 trees generated by the program. A vertical dotted line di-
vides amino acids into groups that correspond to those in Table 3.
Vertical bar I separates amino acids that approximates our clusters
at a cutoff distance of 12.5 and II corresponds to a cutoff of 14.5



all major substitution matrices, with the highest absolute
value of 0.85 between our property-based distances and
the Gonnet matrix. All recent substitution matrices de-
rived from 3D structure comparison show high correla-
tion coefficients. Correlation plots between more famil-
iar matrices like PAM250, [26] BLOSUM62 [27] and
sub-structural matrices [28] are shown in Fig. 6. 

Discussion

Meaning of the five-dimensional descriptors

Our multidimensional scaling method reduces a large
pool of meaningful physical–chemical properties to a
small set of five quantitative descriptors for amino acids.
Five components of the properties were sufficient to re-
produce the distances in the complete property space, 

a measure of the similarity of amino acids. The first 
and second components are dominated by hydrophobi-
city/hydrophilicity and amino acid size, respectively.
However, one cannot simply replace all five components
by individual properties, as several linear combinations of
properties contribute to the components. We found simi-
lar values for the descriptors by repeating the analysis
with smaller subsets of properties if we include at least
one of the general property types (hydrophobicity, size, or
secondary structure propensities) in the property list.

Our goal is to develop a sensitive motif search, based
on physical properties of amino acids rather than on se-
quence identity. In general it is difficult to decide a priori
which of the many properties one should use. Our quan-
titative descriptors represent a precise spatial relation of
all amino acids with respect to many physical–chemical
properties. They should be useful to identify related pro-
teins in genome projects. [43, 44, 45, 46]
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Fig. 6a–d Correlation plots 
between substitution matrices
based on sequence and 3D
structural analysis and our
PDM. Diagonal values were
excluded from the comparison.
a GONG matrix [29] (correla-
tion coefficient r=–0.848). 
b BLOSUM62 matrix [27]
(r=–0.822). c PAM250 matrix
[26] (r=–0.653). d Sub-struc-
tural matrix (SSM), a 3D struc-
ture-based comparison matrix
[28] (r=–0.801)

Table 4 Comparison of proper-
ty distances and similarity
scores derived from substitu-
tion matrices

Basis of the scoring matrix Matrix name and reference ra

Sequence based A composite log-odds matrix [29] –0.848
Log-odds scoring matrix in 74-100 PAM [91] –0.840
BLOSUM62 Substitution matrix [27] –0.822
The PAM250-PET91 matrix [83] –0.716
PAM250 The log odds matrix [26] –0.653

Structure based Sub-structural matrix [28] –0.801
Homologous structure derived matrix [42] –0.793
Structure derived matrix [42] –0.778
Structure-based amino acid scoring table [41] –0.731
Secondary structural similarity matrix [92] –0.709
Structure-based comparison table [93] –0.692

a Linear correlation coefficient
calculated between off-diago-
nal values of the PDM and cor-
responding values in substitu-
tion matrices



Previous studies have addressed the question of prop-
erty-based similarity searches. [5, 6, 47] All of these
studies used a small subset of a priori chosen individual
properties. Otsuka and co-workers [48] used four proper-
ties to investigate similarity relationships between DNA
and RNA polymerases. Grigoriev and Kim have used
five physical properties along with secondary structures
to represent proteins. [5] Their proximity correlation ma-
trix method identified hydrophobicity as the property
most strongly correlated within a family of proteins with
similar folds.

A recent study to characterize disordered regions of
proteins by a large number of physical–chemical proper-
ties ranks hydrophobicity as the major factor. [49] Inter-
estingly the same property, the 14 Å contact number for
amino acids, [50] which had the highest ability to dis-
criminate in the Williams et al. study, also shows the
highest correlation with component E1. We are currently
in the process of determining the discriminatory power
of our five components to find remote true homologues
of proteins.

In a different approach to reduce the redundancy of
existing property scales of amino acids, Tomii and Kane-
hisa [51] performed a cluster analysis of an exhaustive
list of properties. Five out of six of their major clusters
correspond to the five components in our studies. Al-
though this work includes an exhaustive list of proper-
ties, its qualitative nature limits its application in se-
quence studies. In an earlier study Scheraga and co-
workers [52] found ten factors by analyzing 188 physi-
cal–chemical properties in a combination of cluster anal-
ysis and multivariate factor analysis. In our work we
show that five descriptors are sufficient to reproduce the
original space, thus further reduction is possible, and the
dominant factor 1 found in our studies correlates with
hydrophobicity, whereas factor 1 in their study is related
to α-helical propensity.

Reduction of the amino acid alphabet

Our cluster analysis of the 20 amino acids based on the
property distances can be used to define a reduced amino
acid alphabet for protein folding studies. Wang and
Wang [53] simplified the protein folding alphabet to five
groups (CMFILVWY ATH GP SNQRK DE) by reducing
the statistical contact potential of the MJ matrix. [39]
Our clustering is similar, except that the amino acids G,
P, A and C are in separate clusters up to a high distance
cutoff in our method. This result is consistent with ex-
periments that have shown that G and P are absolutely
essential to preserve the 3D fold. [54, 55]

Our 5D descriptors measure differences in protein se-
quences by physical–chemical properties in a concise
and quantitative way. Distances derived from these des-
criptors correlate well with similarity scores derived
from substitution matrices. Future applications of the
descriptors include property-based alignment procedures
and fold recognition. Our descriptors should also be use-

ful for finding sequence motifs based on conserved prop-
erties of protein families.

Electronic supplementary material. The list of 237 physi-
cal–chemical properties with references (properties.html)
is available as electronic supplementary material.
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